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1 Purpose

Continuum dexterous manipulators (CDMs), commonly referred to as snake-
like robots, have demonstrated great premise for minimmally-invasive proce-
dures [11, 4]. Recent innovations have made CDMs appropriate for use in ortho-
pedic surgery [5, 8, 1]. One key challenge of using CDMs is performing precise
intra-operative control guided by a pre-operative patient-specific plan, conceived
based on 3D imaging and potentially bio-mechanical analysis. To this end, the
calibration loop of robot base to end-effector to patient anatomy must be closed,
and an accurate kinematic deformation estimation of the CDM is required.
X-ray image based surgical tool navigation has received increasing interest since
it is fast and supplies accurate images of deep seated structures. Typically, re-
covering the 6 degree of freedom (DOF) rigid pose and deformation of tools with
respect to the X-ray camera can be accurately achieved through intensity-based
2D/3D registration of 3D images or models to 2D X-rays [7]. However, it is well
known that the capture range of image-based 2D/3D registration is inconve-
niently small suggesting that automatic and robust initialization strategies are
of critical importance. Consequently, this manuscript describes a first step to-
wards leveraging semantic information of the imaged object to initialize 2D/3D
registration within the capture range of image-based registration by performing
concurrent segmentation and localization of the CDM in X-ray images.

2 Methods

We seek to train a convolutional neural network (ConvNet) to localize CDMs
in X-ray images. The CDM developed by our group considered here is fabri-
cated using Nitinol. Its outer diameter is 6 mm and it includes an instrument
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channel with a diameter of 4 mm. A set of 26 alternating notches on the body
of the CDM allow for single-plane bending [5, 8]. Due to the unavailability of
annotated X-ray images to train ConvNets, we rely on DeepDRR [10], a frame-
work for physics-based rendering of digitally reconstructed radiographs (DRRs,
i. e. synthetic fluoroscopic images) from 3D CT. DeepDRR accurately accounts
for energy- and material-dependence of X-ray attenuation, scattering, and noise.
Recent work [10, 3] demonstrated that ConvNets trained on DeepDRRs general-
ize to clinically acquired X-ray images without re-training, motivating its use for
the application proposed here. The simulation of the CDM mainly consists of two
parts: 1) body and base of the CDM plus an extended shaft; and 2) inserted tool
and drill. Following previous work on kinematic modeling of this CDM [9], we
assume that the joint angle changes smoothly from one joint to the next. Angles
are parameterized as cubic spline of n = 5 equally distributed control points, τi,
along the central axis of the CDM. The rigid pose of the CDM relative to X-ray
camera is represented by translation and rotation in x, y, and z axes, defining
the total parameter space as θ = {tx, ty, tz, rx, ry, rz, c}, (c = {τ1, ..., τn}).
Given a 3D CT of the lower torso, we manually define a rigid transformation
such that the CDM model is enclosed in the femur, simulating applications in
core decompression and fracture repair [1, 2]. DeepDRR uses voxel representa-
tion, so the CDM surface model is voxelized with high resolution to preserve
details of the notches. At positions where the CT volume exhibits overlap with
the CDM, CT values are omitted to model drilling. From the above volumes
and coordinate transforms, we use DeepDRR to generate 1) realistic X-ray im-
ages, 2) 2D segmentation masks of the CDM end-effector, and 3) 2D locations
of two key landmarks. Our segmentation target region covers the 26 alternating
notches which discerns the CDM from other surgical tools. The two landmarks
are defined as 1) the middle of the 2 conjunction points between the first notch
and the base and 2) the center of the distal plane of the last notch, i. e. start
and end point of CDM centerline. The simulated X-rays have 512 × 512 pixels
with an isotropic pixel size of (0.62 mm)2. DRRs are converted to line-integral
domain to decrease the dynamic range and then normalized to [−1, 1]. Landmark
coordinates are transformed to belief maps expressed as Gaussian distributions
(σ = 5 pixels) around the true location. Data generation was done as follows: A
total of 5 lower-limbs CTs (512 × 512 × 2590 voxel, 0.85 mm3/voxel) were in-
cluded in the experiment and centered around the pelvis. The CDM volume was
manually aligned with the left/right femur to mimic our clinical usecase. Then,
CDM shapes and rigid X-ray source and volume poses were sampled randomly:
Source-to-detector distance was fixed to 1200 mm while source-to-isocenter dis-
tance was ∈ [400 mm, 500 mm]. Source rotation in LAO/RAO was ∈ [0◦, 360◦]
and in CRAN/CUAD ∈ [75◦, 105◦]. Volume translation was ∈ [−20, 20] mm in
all axes. CDM shapes were defined by randomly sampling control point angles
∈ [−7.9◦, 7.9◦]. We sampled a total of 1, 000 random configurations per femoral
head (10, 000 total) to render synthetic images. CTs were split 4 : 1 into train-
ing:testing, and within the training dataset 10 : 1 into training:validation. We
also manually annotated 87 X-ray images of a real CDM drilling in femoral bone
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Fig. 1. Network architecture used for concurrent segmentation and landmark detection.

specimens for quantitative evaluation on cadaveric data.
Inspired by the work of [6], we design a ConvNet-based auto-encoder like ar-
chitecture with skip connections, and split the connection from the last feature
layer to perform two tasks concurrently, i. e. segmentation and landmark de-
tection. Fig. 1 illustrates the ConvNet architecture used here. In the decoder,
we repeat the connection of 2D convolutional layer and maxpooling layer four
times to abstract a feature representation with 512 channels. In the decoder
part, we concatenate the upsampled features and features from the same level in
the encoding stage. The final decoded 32 channel feature layer is shared across
the segmentation path and the localization path. The final output of the seg-
mentation mask is backward concatenated with this shared feature to boost the
localization task. We chose Dice loss to train the segmentation task and the stan-
dard L2 loss for the localization task. Learning rate was initialized with 0.001
and decayed by 0.1 every 10 epochs.

3 Results

The segmentation accuracy is computed as the Dice score of mask prediction.
Landmark detection accuracy is reported as the L2 distance in millimeters. We
first evaluated the network on the synthetic dataset where exact groundtruth
was known. The mean Dice score was 0.996 ± 0.001 and the mean L2 distance
was 0.365± 0.345 mm. On the manually annotated 87 ex vivo X-ray images, the
network achieved a mean Dice score of 0.915 ± 0.063 and mean L2 distance of
2.54± 0.95 mm. The cadaveric data contained configurations never seen during
training (i. e. tool completely outside bone) that induced poor performance of our
network, as reflected in the high standard deviations for the cadaveric dataset.
Representative results are shown in Fig. 2.

4 Conclusions

We presented a learning-based strategy to simultaneously localize and segment
dexterous surgical tools in X-ray images. Our results on synthetic and ex vivo
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Fig. 2. Representative examples of segmentation and landmark detection performance
on synthetic (upper row) and real ex vivo data (lower row). The predicted segmentation
and landmarks are shown as green and red overlay, respectively.

data are promising and encourage training of our ConvNet on a more exhaustive
dataset. We currently investigate how these results translate to other real data
and investigate methods to use semantic information extracted by the proposed
network to reliably and robustly initialize image-based 2D/3D registration.
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